Marine Application Oil Cooler
Standard Oil Cooler
Air Oil Cooler
Process Heater
Air Blast Cooler / Dryer
Pump Motor Assembly
Plate Type Heat Exchanger
Hydraulic Oil Cooler
Standard Oil Cooler 1-2 Pass Models :
Model |
Size |
Capacity kcal/hr |
Oil Flow LPM |
A |
B |
C |
D |
E |
N1/N2 |
N3/N4 |
NS DRAIN |
FOC 2 |
4^{ "}x 18 ^{ "} |
1500 |
10-15 |
456 |
78 |
300 |
370 |
100 |
G 3/4 ^{ "} |
G 1^{ "} |
G 1/4^{ "} |
FOC 3 |
4^{ "} x 20 ^{ "} |
2400 |
15-30 |
472 |
81 |
310 |
386 |
100 |
G 3/4 ^{ "} |
G 1^{ "} |
G 1/4^{ "} |
FOC 5 |
4^{ "} x 24 ^{ "} |
3000 |
20-35 |
606 |
88 |
430 |
520 |
100 |
G 1^{ "} |
G 1^{ "} |
G 1/4^{ "} |
FOC 7.5 |
4^{ "} x 30 ^{ "} |
5000 |
30-35 |
756 |
93 |
570 |
670 |
100 |
G 1^{ "} |
G 1^{ "} |
G 1/4^{ "} |
FOC 10 |
6^{ "} x 18 ^{ "} |
6000 |
35-75 |
456 |
78 |
300 |
350 |
150 |
G 1^{ "} |
G 1 ^{ 1/2}^{ "} |
G 1/4^{ "} |
FOC 15 |
6^{ "} x 20 ^{ "} |
10500 |
60-100 |
472 |
78 |
315 |
366 |
150 |
G 1^{ "} |
G 1 ^{ 1/2}^{ "} |
G 1/4^{ "} |
FOC 20 |
6^{ "} x 24 ^{ "} |
13500 |
80-150 |
606 |
98 |
410 |
500 |
150 |
40 NB Flange |
G 1 ^{ 1/2}^{ "} |
G 1/4^{ "} |
FOC 25 |
6^{ "} x 30 ^{ "} |
18000 |
100-190 |
756 |
103 |
550 |
650 |
150 |
G 1 ^{ 1/2}^{ "} |
G 1/4^{ "} |
FOC 30 |
8^{ "} x 24 ^{ "} |
24000 |
140-270 |
606 |
98 |
410 |
500 |
200 |
40 NB BSP |
G 2^{ "} |
G ^{ 1/2}^{ "} |
FOC 40 |
8^{ "} x 24 ^{ "} |
32000 |
180-370 |
606 |
98 |
410 |
500 |
200 |
G 2^{ "} |
G ^{ 1/2}^{ "} |
FOC 50 |
8^{ "} x 30 ^{ "} |
34000 |
220-415 |
756 |
118 |
520 |
650 |
200 |
50 NB BSP |
G 2^{ "} |
G ^{ 1/2}^{ "} |
FOC 60 |
8^{ "} x 36 ^{ "} |
38000 |
240-456 |
906 |
98 |
710 |
800 |
200 |
G 2^{ "} |
G ^{ 1/2}^{ "} |
Model |
Tubes |
Shell |
Tubessheet |
End Cover |
Baffies |
Standard Models |
Copper |
IS 1239 ERW |
IS 2062 |
CI |
IS 2062 |
Marine Application |
Cu Ni |
SS 316 L |
Brass/AB-2 |
LG-4 |
Brass |
Max. Operating Pressure (Shell) |
10 bar |
Max. Operating Pressure (Tube) |
5 bar |
Max. Operating Temperature |
100 ^{ 0}C |
Water Flow Rate |
1.3 × Oil Flow Rate |
Heat Exchange Selection :
Heat Load Q (kW) = m x Cp x Δ T
Where, m = Mass flow rate of oil = Oil flow rate ( LPM ) x p
m (kg/s) = ( LPM x p / 60,000 )
Heat load Q (kW) = m x Cp x (To-Ti)
Heat load Q (k cal /hr) = Q (kW) x 860.4
Sample Calculation
Heat load Q (kW) = m x Cp x Δ T
Where, m (kg/s) = 40 x 864 / 60,000 = 0.576 kg/s
Heat load Q (kW) = 0.576 x 1.965 x (50-45) = 5.66 kW
Heat load Q (k cal /hr) = 5.66 kW x 860.4 = 4870 k cal/hr
Thus selecting FOC 7.5 Model from Table for above heat load and
oil flow rate. Water flow rate = 1.3 times Oil flow rate
Apart from our standard models, we undertake design of shell and tube
heat exchangers as per customer requirement.
Required Parameters
Oil Grade
Density of Oil p (kg/m3)
Specific Heat of Oil Cp (kJ/kg°C)
Oil Inlet Temperature Ti (^{0}C)
Oil Outlet Temp Required To (^{0}C)
Oil Flow Rate LPM
Assumed Parameters
Oil Grade= ISO VG 68
Density of Oil p (kg/m3) = 864
Specific Heat of Oil Cp (kJ/kg°C) =1.965
Oil Inlet Temperature Ti (^{ 0}C) = 50
Oil Outlet Temp Required To (^{ 0}C) = 45
Oil Flow Rate LPM = 40
Flowtex Oil Cooling Package Models (AHOC1 - AHOC9)
Cooler Model |
Oil Flow LPM |
Heat Loan KW |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
AHOC1 |
10-30 |
2-5 |
400 |
369 |
198 |
250 |
200 |
DIA 12 |
175 |
110 |
DIA 8.5 |
G ^{ 1/2} ^{ "} |
AHOC2 |
30-70 |
4-10 |
527 |
466 |
420 |
350 |
300 |
DIA 12 |
225 |
110 |
DIA 11 |
G ^{ 1/2} ^{ "} |
AHOC3 |
50-90 |
8-15 |
540 |
466 |
453 |
350 |
300 |
DIA 12 |
225 |
110 |
DIA 11 |
G1 ^{ "} |
AHOC4 |
70-130 |
12-20 |
657 |
591 |
440 |
350 |
300 |
DIA 12 |
300 |
150 |
DIA 11 |
G 1 1/4^{ "} |
AHOC5 |
100-180 |
18-26 |
690 |
591 |
473 |
350 |
300 |
DIA 12 |
300 |
150 |
DUA 11 |
G 1 1/4^{ "} |
AHOC6 |
150-220 |
25-35 |
787 |
760 |
545 |
425 |
375 |
DIA 14 |
350 |
150 |
DIA 13 |
G 1 1/4^{ "} |
AHOC7 |
200-270 |
32-42 |
820 |
760 |
577 |
425 |
375 |
DIA 14 |
350 |
150 |
DIA 13 |
G 1 1/4^{ "} |
AHOC8 |
250-320 |
40-50 |
887 |
868 |
565 |
450 |
400 |
DIA 14 |
415 |
165 |
DIA 13 |
G 1 1/4^{ "} |
AHOC9 |
300-420 |
45-65 |
920 |
868 |
623 |
450 |
400 |
DIA 14 |
415 |
165 |
DIA 13 |
G1 ^{ 1/2} ^{ "} |
Flowtex Oil Cooling Package Models (AHOC10 - AHOC13)
Cooler Model |
Oil Flow LPM |
Heat Loan KW |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
AHOC10 |
350-480 |
60-75 |
1241 |
1079 |
681 |
450 |
380 |
829 |
1029 |
18 Ø X 36 |
G ^{ 1/2} ^{ "} |
G ^{ 1/2} ^{ "} |
AHOC11 |
400-500 |
72-85 |
1241 |
1079 |
730 |
450 |
380 |
829 |
1029 |
18 Ø X 36 SLOT |
G2^{ "} |
G2^{ "} |
AHOC12 |
450-500 |
85-93 |
1365 |
1208 |
715 |
450 |
380 |
958 |
1158 |
18 Ø X 36 SLOT |
G2^{ "} |
G2^{ "} |
AHOC13 |
480-520 |
90-100 |
1365 |
1208 |
731 |
450 |
380 |
958 |
1158 |
18 Ø X 36 SLOT |
G2^{ "} |
G2^{ "} |
Materials :
Core : Brazed aluminium bar & plate.
Connection : Aluminium female BSP.
Fan Cowl : Steel with powder coating finish.
Fan Guard : Steel
Fan : PAG
Motor Bracket : Steel with enamel finish.
Motor : Electric motor (Make CGl)
Cooler Type |
Fan Dia (mm) |
Fan Speed (RPM) |
Noise Level dB (A) |
Motor Voltage / Frequency (+ / 10%) |
Motor Power HP Three Phase |
Max. Working Pressure (Bar) |
*AHOC1 |
250 |
1410 |
68 |
380/50 |
0.5 |
15 |
*AHOC2 |
350 |
1410 |
79 |
415/50 |
0.75 |
15 |
AHOC3 |
350 |
1410 |
79 |
415/50 |
0.75 |
15 |
AHOC4 |
450 |
1410 |
80 |
415/50 |
1 |
15 |
AHOC5 |
450 |
1410 |
80 |
415/50 |
1 |
15 |
AHOC6 |
550 |
1410 |
83 |
415/50 |
1.5 |
15 |
AHOC7 |
530 |
1410 |
83 |
415/50 |
1.5 |
15 |
AHOC8 |
630 |
1410 |
85 |
415/50 |
1.5 |
15 |
AHOC9 |
630 |
1410 |
85 |
415/50 |
2 |
15 |
AHOC10 |
750 |
1440 |
85 |
415/50 |
2 |
15 |
AHOC11 |
750 |
1440 |
95 |
415/50 |
3 |
15 |
AHOC12 |
900 |
1440 |
95 |
415/50 |
3 |
15 |
AHOC13 |
900 |
1440 |
95 |
415/50 |
3 |
15 |
Design Condition :
• Oil gRADE : iso vg 68
• Oil Flow Rate : 10 to 520 LPM
• Oil Inlet Temperature = 70 ^{0} C
• Oil Outlet Tempeture = 65^{0}C
• Ambient Air Temperature = 40 ^{0}C
• Determine the heat load to be rejected in kW.
Heat Load to be rejected (Q) in kW.
Q = 0.03 x Oil Flow Rate in LPM x (Inlet Oil Temperature - Outlet Oil
Temperature)
The Inlet oil temperature is generally the maximum system oil temperature.
The Outlet oil temperature is generally the desired oil temperature from the cooler
•
Determine Entering Temperature Difference. ( E.T.D)
E.T.D ^{o}C = Inlet Oil Temperature Inlet Air Temperature.
The Inlet Air Temperature is the highest Ambient Air temperature the application will see.
•
Determine the corrected heat dissipation to use the curves
Corrected Heat Load = Q ( kW ) x 30 ^{o}C / E.T.D
•
Select models from curves.
On the Graph of Heat Load ( kW) v/s Oil Flow Rate (LPM) plot the intersecting point of Corrected Heat Load and
Oil Flow Rate. From the graph provided select appropriate model of AHOC. Select the nearest curve above the
intersection point of the graph.
•
Determine oil pressure drop from table :
From the table of pressure drop (bar) and Oil Flow Rate (LPM), for the selected model of Hydraulic Oil Cooler the
corresponding pressure drop indicates the maximum pressure drop for the given maximum oil flow rate.
Actual Conditions (Assumed)
• Fluid : ISO VG 68
• Oil Inlet Temperature : 70 ^{o}C
• Oil Outlet Temperature : 51.8 ^{ o}C
• Ambient Temperature : 45^{o}C
• Flow Rate : 20 LPM.
• Determine Heat Load in kW.
Q = 0.03 x Oil Flow Rate in LPM x (Inlet Oil Temperature - Outlet oil temperature)
= 0.03 x 20 ( 70 - 51.8 )
= 11 kW.
•
Calculate the Entering Temperature Difference. ( E.T.D)
E.T.D ^{ o}C = Inlet Oil Temperature - Inlet Air Temperature.
= 70 - 45
= 25^{o}C
•
Determine the corrected heat dissipation to use the curves.
Corrected Heat Load = Q ( kW ) x 30·C I E.T.D
= 11 x 301 25
= 13.2 kW.
•
Select models from curves:
Find the intersection point between the corrected heat load and flow rate on the performance curves. Any curve above
this point will work for this application. In these case the intersection point on the graph indicates AHOC6.
•
Determine oil pressure drop from table:
The pressure drop should be found next. From the table of pressure drop ( bar) and max. oil flow rate I
for AHOC6 the maximum pressure drop of oil will be 0.92 bar.
Similarly, you can try to select any AHOC models as per your requirement by following the above steps with your
technical data.